The cylindrical cell continues to be one of the most widely used packaging styles for primary and secondary batteries. The advantages are ease of manufacture and good mechanical stability. The tubular cylinder can withstand high internal pressures without deforming. Many lithium and nickel-based cylindrical cells include a positive thermal coefficient (PTC) switch. When exposed to excessive current, the normally conductive polymer heats up and becomes resistive, stopping current flow and acting as short circuit protection. Once the short is removed, the PTC cools down and returns to the conductive state. Most cylindrical cells also feature a pressure relief mechanism, and the simplest design utilizes a membrane seal that ruptures under high pressure. Leakage and dry-out may occur after the membrane breaks. Re-sealable vents with a spring-loaded valve are the preferred design. Some consumer Li-ion cells include the Charge Interrupt Device (CID) that physically and irreversibly disconnect the cell when activated to an unsafe pressure builds up. Figure 1 shows a cross section of a cylindrical cell. Typical applications for the cylindrical cell are power tools, medical instruments, laptops and e-bikes. To allow variations within a given size, manufacturers use partial cell lengths, such as half and three-quarter formats, and nickel-cadmium provides the largest variety of cell choices. Some spilled over to nickel-metal-hydride, but not to lithium-ion as this chemistry established its own formats. The 18650 illustrated in Figure 2 remains one of the most popular cell packages. Typical applications for the 18650 Li-ion are power tools, medical devices, laptops and e-bikes. The 18650 could well be the most optimized cell; it offers one of the lowest costs per Wh and has good reliability records. As consumers move to the flat designs in smart phones and tablets, the demand for the 18650 is fading and Figure 3 shows the over-supply that is being corrected thanks to the demand of the Tesla electric vehicles that also uses this cell format for now. As of end of 2016, the battery industry fears battery shortages to meet the growing demand for electric vehicles. Cylindrical Advantages Compared to prismatic cells, cylindrical cells can be produced much faster so more KWh per cell can be produced every day equaling lower $ per KWh. The electrodes in a cylindrical cell are wound tightly and encased in a metal casing, This minimizes electrode material from breaking up from the mechanical vibrations, thermal cycling from charging and discharging and mechanical expansion of the current conductors inside from thermal cycling. Many cells are combined in series and in parallel to increase voltage and capacity of the battery pack. If one cell goes bad, the impact on the entire pack is low. With prismatic cells if one cell goes bad it can compromise the whole battery pack. Cylindrical cells radiate heat and control temperature more easily than prismatic cells. The main issue with all lithium batteries is how to prevent a cell from overheating and rupturing if over charged. Our Lithium batteries have several layers of safety redundancy systems at the cell level. The most notable safety feature in our latest cell design is the internal thermal fuse between the anode and cathode that will shut down the cell before the temperature rises, preventing pressure build up and activating the 1.5Mpa safety vent. If the thermal fuse failed and pressure was released through the safety vent, the electrolyte has a flame retardant additive making the battery safe. These conditions would likely only occur if a charger or controller failed spiking current into the battery. The BPS is designed to protect the cells from this anomaly by opening at 15.8V and would have to fail in the closed state allowing excess current into the cells. The Group 31 - 12V 100AH is built with 80 cylindrical 3.2V 5AH (32650) cells combined with 4 sets of 20 cells in parallel and then combined in series. All 80 cells are matched by measuring 10 consistencies during several charge / discharge cycles at the end of production.
Introduced in the early 1990s, the modern prismatic cell satisfies the demand for thinner sizes. Wrapped in elegant packages resembling a box of chewing gum or a small chocolate bar, prismatic cells make optimal use of space by using the layered approach. Other designs are wound and flattened into a pseudo-prismatic jelly roll. These cells are predominantly found in mobile phones, tablets and low-profile laptops ranging from 800mAh to 4,000mAh. No universal format exists and each manufacturer designs its own. Prismatic cells are also available in large formats. Packaged in welded aluminum housings, the cells deliver capacities of 20–50Ah and are primarily used for electric powertrains in hybrid and electric vehicles. Figure 5 shows the prismatic cell. The prismatic cell improves space utilization and allows flexible design but it can be more expensive to manufacture, less efficient in thermal management and have a shorter cycle life than the cylindrical design.
In 1995, the pouch cell surprised the battery world with a radical new design. Rather than using a metallic cylinder and glass-to-metal electrical feed-through, conductive foil-tabs were welded to the electrodes and brought to the outside in a fully sealed way. The pouch cell offers a simple, flexible and lightweight solution to battery design. Some stack pressure is recommended but allowance for swelling must be made. The pouch cells can deliver high load currents but it performs best under light loading conditions and with moderate charging. Source: A123 The pouch cell makes most efficient use of space and achieves 90–95 percent packaging efficiency, the highest among battery packs. Eliminating the metal enclosure reduces weight, but the cell needs support and allowance to expand in the battery compartment. The pouch packs are used in consumer, military and automotive applications. No standardized pouch cells exist; each manufacturer designs its own. Pouch packs are commonly Li-polymer. Small cells are popular for portable applications requiring high load currents, such as drones and hobby gadgets. The larger cells in the 40Ah range serve in energy storage systems (ESS) because fewer cells simplify the battery design. Although easily stackable, provision must be made for swelling. While smaller pouch packs can grow 8–10 percent over 500 cycles, large cells may expand to that size in 5,000 cycles. It is best not to stack pouch cells on top of each other but to lay them flat, side by side or allow extra space in between them. Avoid sharp edges that can stress the pouch cells as they expand. Pouch cells are manufactured by adding a temporary “gasbag” on the side. Gases escape into the gasbag while forming the solid electrolyte interface (SEI) during the first charge. The gasbag is cut off and the pack is resealed as part of the finishing process. Forming a solid SEI is key to good formatting practices. Subsequent charges should produce minimal gases, however, gas generation, also known as gassing, cannot be fully avoided. It is caused by electrolyte decomposition as part of usage and aging. Stresses, such as overcharging and overheating promote gassing. Ballooning with normal use often hints to a flawed batch. The technology has matured and prismatic and pouch cells have the potential for greater capacity than the cylindrical format. Large flat packs serve electric powertrains and Energy Storage System (ESS) with good results. The cost per kWh in the prismatic/pouch cell is still higher than with the 18650 cell but this is changing.

Stay Connected

" Our Purpose "

We are committed to  democratizing equal  access to clean and

sustainable energy

Global Head Office: Kenergy Holding Pte. Limited, #10 Anson Road, 10-11 International Plaza, Singapore 079903

 

Navigate

Home

Privacy

Report

Disclaimer