What is a lithium-ion battery and how does it work? A lithium-ion (Li-ion) battery is an advanced battery technology that uses lithium ions as a key component of its electrochemistry. During a discharge cycle, lithium atoms in the anode are ionized and separated from their electrons. The lithium ions move from the anode and pass through the electrolyte until they reach the cathode, where they recombine with their electrons and electrically neutralize. The lithium ions are small enough to be able to move through a micro-permeable separator between the anode and cathode. In part because of lithium’s small size (third only to hydrogen and helium), Li-ion batteries are capable of having a very high voltage and charge storage per unit mass and unit volume. Li-ion batteries can use a number of different materials as electrodes. The most common combination is that of lithium cobalt oxide (cathode) and graphite (anode), which is most commonly found in portable electronic devices such as cellphones and laptops. Other cathode materials include lithium manganese oxide (used in hybrid electric and electric automobiles) and lithium iron phosphate. Li-ion batteries typically use ether (a class of organic compounds) as an electrolyte. What are some advantages of Li-ion batteries? Compared to the other high-quality rechargeable battery technologies (nickel-cadmium or nickel-metal-hydride), Li-ion batteries have a number of advantages. They have one of the highest energy densities of any battery technology today (100-265 Wh/kg or 250-670 Wh/L). In addition, Li-ion battery cells can deliver up to 3.6 Volts, 3 times higher than technologies such as Ni-Cd or Ni-MH. This means that they can deliver large amounts of current for high-power applications, which has Li-ion batteries are also comparatively low maintenance, and do not require scheduled cycling to maintain their battery life. Li-ion batteries have no memory effect, a detrimental process where repeated partial discharge/charge cycles can cause a battery to ‘remember’ a lower capacity. This is an advantage over both Ni-Cd and Ni-MH, which display this effect. Li-ion batteries also have low self-discharge rate of around 1.5-2% per month. They do not contain toxic cadmium, which makes them easier to dispose of than Ni-Cd batteries. Due to these advantages, Li-ion batteries have displaced Ni-Cd batteries as the market leader in portable electronic devices (such as smartphones and laptops). Li-ion batteries are also used to power electrical systems for some aerospace applications, notable in the new and more environmentally friendly Boeing 787, where weight is a significant cost factor. From a clean energy perspective, much of the promise of Li-ion technology comes from their potential applications in battery-powered cars. Currently, the bestselling electric cars, the Nissan Leaf and the Tesla Model S, both use Li-ion batteries as their primary fuel source.
 Generation I " Liquid electrolyte based chemistry is the first electrochemical battery " for a advanced chemistry cell. Generation II " Liquid Polymer or Gel based electrolytes evolved leading better electro-conductivity performance
What are some disadvantages of Li-ion batteries? Despite their technological promise, Li-ion batteries still have a number of shortcomings, particularly with regards to safety. Li-ion batteries have a tendency to overheat, and can be damaged at high voltages. In some cases this can lead to thermal runaway and combustion. This has caused significant problems, notably the grounding of the Boeing 787 fleet after onboard battery fires were reported. Because of the risks associated with these batteries, a number of shipping companies refuse to perform bulk shipments of batteries by plane. Li-ion batteries require safety mechanisms to limit voltage and internal pressures, which can increase weight and limit performance in some cases. Li-ion batteries are also subject to aging, meaning that they can lose capacity and frequently fail after a number of years. Another factor limiting their widespread adoption is their cost, which is around 40% higher than Ni-Cd. Addressing these issues is a key component for current research into the technology. Finally, despite the high energy density of Li-ion compared to other kinds of batteries, they are still around a hundred times less energy dense than gasoline (which contains 12,700 Wh/kg by mass or 8760 Wh/L by volume).
The History of the Lithium-Ion Battery In the late 1970s, a team of global scientists began developing what would become the lithium-ion battery, a type of rechargeable battery that would eventually power everything from portable electronics to electric vehicles and mobile phones. the Nobel Prize in Chemistry 2019 was awarded to three scientists, John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino, for their work in developing this battery. According to the official Nobel Prize organization, “this lightweight, rechargeable and powerful battery is now used in everything from mobile phones to laptops and electric vehicles. It can also store significant amounts of energy from solar and wind power, making possible a fossil fuel-free society.” The History of the Lithium-Ion Battery During the oil crisis in the 1970s, Stanley Whittingham, an English chemist working for Exxon mobile at the time, started exploring the idea of a new battery – one that could recharge on its own in a short amount of time and perhaps lead to fossil-free energy one day. In his first attempt, he tried using titanium disulfide and lithium metal as the electrodes, but the combination posed several challenges, including serious safety concerns. After the batteries short-circuited and caught on fire, Exxon decided to halt the experiment. However, John B. Goodenough, currently an engineering professor at the University of Texas at Austin, had another idea. In the 1980s, he experimented using lithium cobalt oxide as the cathode instead of titanium disulfide, which paid off: the battery doubled its energy potential. Five years later, Akira Yoshino of Meijo University in Nagoya, Japan, made another swap. Instead of using reactive lithium metal as anode, he tried using a carbonaceous material, petroleum coke, which led to a revolutionary finding: not only was the new battery significantly safer without lithium metal, the battery performance was more stable, thus producing the first prototype of the lithium-ion battery. Together, these three discoveries led to the lithium-ion battery as we know it. solid state chemistry Solid-state batteries use both solid electrodes and electrolytes. They serve to be a potential alternative to conventional lithium-ion batteries, which use liquid or polymer electrolytes. Solid-state batteries are an emerging trend for next-generation traction batteries, as they offer high performance and safety at low cost. Additionally, they have low flammability, higher electrochemical stability, higher potential cathodes, and higher energy density as compared to liquid electrolyte batteries.
 Development Time-line of Solid State Batteries starting in 1950
Solid electrolytes Currently, there are more than 25 types of solid-state electrolytes, such as oxides, sulfides, phosphates, polyethers, polyesters, nitrile-based, polysiloxane, polyurethane, etc. Major difference between inorganic/ceramic and polymer solid electrolytes is the mechanical property. High elastic moduli of ceramics make them more suitable for rigid battery systems, while low elastic moduli of polymers make them more suitable for flexible devices. Polymers are easier to process than ceramics, which reduces fabrication costs. Ceramics are more suitable for harsh environmental conditions, such as high temperatures.
Solid-electrolyte Interfacial Layer (SEI) is not formed in case of solid-state batteries, which results in very low self-discharge rates allowing multi-year power storage with minimal loss. These batteries are expected to operate 50–100 times longer than conventional liquid lithium-ion batteries. Currently available solid-state batteries face a challenge in terms of operating life, which is approximately three years. Research & development activities help extend the operating life of solid-state batteries for more than three years so that they can be fully commercialized for electric vehicles.

Stay Connected

" Our Purpose "

We are committed to  democratizing equal  access to clean and

sustainable energy

Global Head Office: Kenergy Holding Pte. Limited, #10 Anson Road, 10-11 International Plaza, Singapore 079903

 

Navigate

Home

Privacy

Report

Disclaimer